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This paper is devoted to the problem of the validity of claims that commutation
rules of quantum field theories have its origin in Poisson brackets of classical
mechanics.
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1. INTRODUCTION

In quantum field theory a physical matter particle is understood as a field
that is (Teller, 1995, pp. 103–106) “field configurationswhich are assignments
of values of quantities to spacetime points, where the values may be governed
by field equations.” In quantum field theory (nonlinear field equations are ex-
cluded) this field “will in addition assume superimposability of the field configu-
rations. The superposition of two field configurations is again a configuration of the
field.” This matter field is an object, which is extended and continues in space. It
has its mathematical existence in the Fock space, combining “the concepts of su-
perposition, fields, and quanta understood as entities with discreteness and at least
a high degree of localizability. . . ,” and hence it is seen as a set of strictly point-like
aggregated (Teller, 1995, p. 31) quanta.

This quantum field theory assumption has many consequences, which some-
times are not so easily seen. Some of them lay almost at the beginning of the
construction of the mathematical formalism, yet clearly inside the model. Others,
like the one below, appear only in the context of the well known bridges between
different fields of physics, but so close to the basis that we pass them by, going to
more advanced problems. Finally, this paper is devoted to the problem of the va-
lidity of claims that commutation rules in quantum field theories have their origin
in Poisson brackets of classical mechanics.
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2. VALIDITY OF THE TRANSITION

The quantization rule of quantum mechanics follows from the Heisenberg
commutation relations, Poisson brackets imitators:

[xi , pj ] = i hδi j , [xi , xj ] = [ pi , pj ] = 0, (i , j = 1, 2, 3), (1)

where the momentumpi is defined canonically as∂L/∂ ẋi , x̄ = (xi ) and p̄ =
(pi ) are the position and momentum vectors, respectively. In scalar quantum field
theory,φ(x̄, t) plays a role similar to the position vectorx̄(t) in quantum mechanics.
φ(x̄, t) describes a system with an infinite number of degrees of freedom with an
independent value ofφ at each point in space at any given instant of time.

Hence let us start with the Lagrangian density connected with the Klein-
Gordon equation for a scalar fieldφ(x̄, t):

L = 1

2
∂µφ∂

µφ − m2

2
φ2 (2)

Because, as we said, in quantum field theory the quantityφ(x̄, t) plays a role
which is analogous to that played bȳx in quantum mechanics hence the standard
procedure to obtain the quantization rule of quantum field theory is to divide the
space into cells of volumeδVr , with φr (t) being the average value ofφ(x̄, t) in a
cell r at timet . SimilarlyLr is the average Lagrangian density in each cell. Then
the momentum variablepr , conjugate toφr is

pr (t) = ∂L

∂φ̇(t)
= δVr

Lr

∂φ̇r (t)
= δVrπr (t), (3)

where the fieldπ (x̄, t) is defined by

π (x̄, t) = ∂L
∂φ̇(x̄, t)

. (4)

In Eq. (3)πr (t) is defined as the average value ofπ (x̄, t) in the cellr .
Now, because the Heisenberg commutation relations give

[φr (t), ps(t)] = i hδrs (5)

we obtain, using Eqs. (3) and (5),

[φr (t), δVsπs(t)] = i hδrs. (6)

Until now the procedure (Ryder, 1994) was clear. But the next steps (which
became a part of the standard thinking) are illegal, and lead to an error (I will recall
them). Let us divide Eq. (6) byδVs 6= 0, and we obtain the following relation:

[φr (t), πs(t)] = i h
δrs

δVs
. (7)
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Then it is said (Ryder, 1994; Schiff, 1968) that Eq. (7) leads, in the limitδVs→ 0,
to the following one:

[φ(x̄, t), π (x̄′, t)] = i hδ(x̄ − x̄′). (8)

This is the standard procedure. But even if the commutation relation given by
Eq. (8) implies commutation relations with the Hamiltonian that gives the correct
equations of motion, yet we are not allowed to go (in the limitδVs→ 0), from
Eqs. (7) to (8). The fact is that in the limit limδVs→0(i h δrs

δVs
) (of RHS of Eq. (7)),

δVs is not allowed to be equal to 0, which might obviously be the case of Eq. (8)
(with δVs = 0 representing a point). Hence the step from Eqs. (7) to (8) can by no
means be the declared step from finite (connected with Eq. (7)) to infinite number
of degrees of freedom connected with Eq. (8).

But if we assume that Eq. (8) is correct (because the entire quantum field
theory is based on it) and that (although in the different model but at the same time),
Eq. (7) is also correct, then we should say that the Plank constanth includes (that
it has always included) the Dirac delta functionδ(x̄ − x̄′). But now the Heisenberg
inequality

1x1p ≥ 1

2
h ≡ constant× δ(1x) (9)

leads to the conclusion

1x = 0⇒ 1p is infinite of higher order thanδ(0), (10)

which means that a point particle spreads out, but every particle with size1x 6= 0
might be stable (in the sense that it might not spread out).

3. FINAL DISCUSSION AND CONCLUSIONS

From the previous section one could clearly noticed that there is strong incon-
sistency in all quantum theories, in the sense that quantum mechanics with constant
Planck constant is not consistent with quantum field theory where “Planck con-
stant” is equal to constant× δ(x̄ − x̄′). Or, quantum field theory has not assigned to
it elegant, Poisson brackets basis, which it could have if Eq. (8) might be obtained
from Eq. (7).

Moreover, we hope that transition from Poisson brackets{ } to 1
i h[ ] is unique

in the sense that it possesses a well defined transition constanth.
Nevertheless, forδVs 6= 0(1x 6= 0), the whole procedure is consistent. It fol-

lows that quantum mechanics and quantum field theory are consistent (but not the
same!) forδVs 6= 0. In quantum field theoryφ(x̄, t) is the mathematical represen-
tation of a matter particle and we avoid inconsistency only when bothφ(x̄, t) and
a matter particle are extended in space. Yet, forδVs = 0 there is inconsistency and
I could not say that quantum mechanics or quantum field theory is right.
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